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=" A new method of estimating wall interference in unsteady flow
is presented. This method is valid for subcritical flow within the accuracy of
the linearized small disturbance theory. The main feature of the method is
the use of measured pressure along lines in the flow direction near the tunnel
walls. This method is particularly effective in a tunnel with ventilated walls
because it does not require the representation of wall characteristics with
unreliable mathematical expressions. Results of some numerical examples
indicate that the new method produces satisfactory results except for cases
when the reduced frequencies are close to the tunnel resonance frequencies.
For the case of an airfoil in pitching motion, the method has been used to
correct the amplitude of the angle of attack and the time lag in the motion.

RESUME

Une nouvelle méthode d’estimation de la perturbation des
écoulements instationnaires par des parois est présentée. Elle s’applique aux
éconlements subcritiques dans 'intervalle de précision permis par la théorie
des petites perturbations linéarisées. Sa principale caractéristique est I’emploi
de mesures de la pression tangentielle & 1’écoulement prés des parois de la
soufflerie. La méthode est particuliérement utile dans les souffleries a parois
ventilées car elle ne nécessite aucune représentation mathématique, souvent
erronée, des caractéristiques des parois. Les résultats de quelques exemples
numériques montrent que la nouvelle méthode donne des résultats satis-
faisants, sauf lorsque les fréquences réduites approchent les fréquences de
résonnance de la soufflerie. Pour un profil aérodynamique en tangage, la
méthode a permis de corriger 1'angle d’attaque et le retard dans le mouve-
ment.
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NOTATIONS

Definition

sound speed of undisturbed uniform flow
pressure coefficient

defined in Equation (22)

pressure coefficient at z= H
Equation (56)

Equation (57)

1ift coefficient

defined in Equation (92)

jCr| due to unit pitching motion
defined in Equation (27)

defined in Equation (21)

defined in Equation (53)

airfoil chord length

defined in Equation (78)

= gH

tunnel semi-height

the Struve function

amplitude of plunging motion
imaginary number

defined in Equation (74) or (85)
Bessel function

defined in Equation (59)

defined in Equation (34)

defined in Equations (36) and (87)
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Definition
an integer

A~

reduced frequency = Ecg—

a large positive number

uniform flow Mach number

an integer

normal outward co-ordinate to 92 or an integer
the Newmann function, Equation (A-21)
defined in Equation (A-10)

a large positive number

a large positive number

defined in Equation (80)

defined in Equation (83)

mean camber of airfoil

transformed time variable, Equation (5)
time

uniform flow speed

upwash along the z-axis

defined in Equation (66)

defined in Equation (39)

defined in Equation (60)

defined in Equations (63) and (64)
defined in Equation (65)

defined in Equation (38)

defined in Equation (73)

distance measured from the pitch axis in the uniform flow direction

(vil)




~
U, 0y
B

L

ACpc .

AC,, AC,,, AC,,

AC,,

4G,
ACP
AK
AK,, K,
AW
Do,
Ar
;193
n,
%y
€

9,0

NOTATIONS (Cont'd)
Definition
transformed %, Equation (5)
leading edge x-co-ordinate
trailing edge x-co-ordinate
transformed ; and X
distance upward from k-axis
transformed z, Equation (5)
angle of attack
time-averaged angle of attack
amplitude of angle of attack of pitching motion
defined in Equation (4)
Euler constant (=0.5772156649)
defined in Equation (53)
defined in Equation (32)
pressure coefficient difference between the upper and lower airfoil surfaces
defined in Equation (71)
defined in Equation (70)
defined in Equations (61) and (62)
defined in Equation (69)
= -ay
time lag of pitching motion, Equation (1)
boundary of 2
a small circle with the radius p and the center at (x,z)
a big circle with the radius R and the center at (x,z) ; f
a small positive number k
integral variables

(viid)




o stz ¥

il ki o

x E

o> © >~
2 g &

° 3>
o 9
st

2w

L 4 €

[ %

NOTATIONS (Cont’d)
Definition
defined in Equation (15)
(x2)
a small positive number
full velocity potential functions
small perturbation velocity potential functions, Equations (42) and (43)
defined in Equation (8)
defined in Equation (10)
transformed ¢, Equation (43)
defined in Equation (45)
defined in Equation (14)
phase lag in lift, Equation (91)
analytical real valued function in §2, Equation (47)
defined in Equation (17)
integral variable
a part of flow field
angular velocity of pitching or plunging motion
transformed &, Equation (9)
the Landau’s symbol, Equations (A-30) and (B-9)

= lforx>0
~-1forx<0

averaged value over the airfoil
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A NEW METHOD OF ESTIMATING WIND TUNNEL WALL INTERFERENCE
IN THE UNSTEADY TWO-DIMENSIONAL FLOW

1. INTRODUCTION

The unsteady wall interference problem has not been as thoroughly investigated as the
steady case (Refs. 1 - 5). A new method of estimating the wall interference in unsteady subsonic flow
is presented in this paper. The method requires the time-dependent pressure along lines in the flow
direction near the tunnel walls and on the airfoil mode] to be measured. The pressure along the lines
will be that on the walls if the tunnel walls are solid. This method is particularly effective if the walls
are ventilated, since the method is valid no matter how complicated the wall characteristics may be.
The merit of this approach is similar to that for steady flow which were developed by several re-
searchers (Refs. 6 - 10). There is only a slight difference between the steady and unsteady wall inter-
ference problem, and that lies in the fundamental equation for the small perturbation potential.
In incompressible flow, even this difference vanishes and the wall corrections can be obtained using
similar method developed for steady flow. The new method will first be presented in the analytical
way and then some examples of the corrections for a pitching airfoil will be calculated. The data
used here are not obtained by tunnel tests but by numerical means.

2. ANALYSIS

Suppose a thin airfoil is in pitching motion with a constant angular velocity & in free air.
In this case it is convenient to locate the origin of a space co-ordinate system (x,z) at the pitch axis,
where x is the distance measured from this axis along the uniform flow direction and z is the distance
perpendicular to the x axis. The time A7 is defined as the time when the time-dependent averaged
positions of the airfoil coincide. The angle.of attack, o, (Fig. 1) for this airfoil can be written as
follows:

&J(t) = 0, + (’\X’A.sin{c:\)(:l‘: -a?2)} . (1)

In order to simplify the analysis, the flow is assumed to be inviscid, irrotational and
subcritical everywhere. Furthermore the thin airfoil approximation is also assumed to be valid. By .
the aid of these assumptions, the fundamental equation for the small disturbance potential function ¢
can be written as

I x Mo ¥ _ I %
(1=M)@ss + Fge 200700 ~ 938, =0, @
where g is defined as follows:
d =Uex + 0 . (3)

Y
@(x,z) is the full velocity potential function. M_ and a_ are the Mach number and the sonic speed
for the undisturbed flow infinite upstream. Variables are introduced as follows:

Pd = clnd , B=AI-M, @

and (x,2,1) = (ex, 5% g_-/-;-t), (8)

where c is the chord length of the airfoil. Equation (2) becomes

———————— .
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2% Mo 3 g
Ve "2"75-'¢,_¢—¢tt =0, 6)
where the operator \ZT
2 _ a‘
vi= +a—‘;—, : (7)

Suppose the flow disturbed by the oscillating airfoil with constant angular velocity & is
also periodical in time thh the same angular velocity everywhere, within the accuracy of the small

disturbance theory, then ¢ can be written

P~
A

$(2,5) = $(5,3) + bR 5 sindD) + $.(%,5)- cos(d D, 8)

)

Defining w as
w =< .14 (9)
gives
5(1’,2) = 6‘;(2,2) +$s(z,z)-sm(a)~t) + #1(1,2)-005'(0-1‘), (10)

where $0, 'q\)'c and ;5; correspond to $9r @, and ¢, in Equation (4).

Substituting Equation (10) for a into Equation (6) gives

vig, = 0 ., (11)
Vg, - gﬁ" b t @b =0, (12)
and V1¢$ +2- &)_/_g_"ﬂ ¢cz + & 5: =0 (12a)

Introducing the new function ¢* defined as

~ . > ia’M“-x
(P +ip e B~ (13)

o~

¢

Equations (12) and (12a) can be combined into one equation:
Vo' + 4" = 0, (14)

where K = “’//5 . (15)

eredm

From Green’s theorem, the following expression for 3‘* can be obtained:

v
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(8 vs-7vgr00 = § GH-v-F)es , a0

where ‘;17 is a real valued analytical function throughout the flow field §2 and 952 is its boundary and
n is the outward normal co-ordinate to 32. The following form for { is considered here:

~ {
V(E,2;x,2) = —’-[ L sinfr1Z 211207 - cos{xCE -5 ) 4O
2 27 0{,_02

_ 1 “_l_.e-xM-zNoT'_/
=), s

;D' is continuous and differentiable two times with £ and { except the point (x,z) and satisfies the
following equation except at that point:

.Cos{k(t-x)0]db, a7

Vg o+ kY =0, , (18)

Define §2 as the full space except the point (x,z) and the x axis downstream from the leading edge,
Equation (16) reduces to the following expression:

<Ig"(%,z) =~ (g + W d (19)
{er 12 e,
where
[911 = Lim {¢z,2)- ¢c&,-20} . (20)

0+

Appendix A can be referred to for the detailed derivation of the above equation. x; is the point which
corresponds to the leading edge x-co-ordinate %; in Equation (5).

The dynamic pressure coefficient Ep (x,2,t) can be calculated from é as follows:

6(%)%){):—._.2_. _i_ _9_ Y A A A 21
P cz‘,(a% + U ai)(b(r,z,t), (21)

Substituting Equation (8) for & in the above equation gives

Co(%,2) = Cpo (£,2) + Cpe (2,82 cos@l) + Cps (B, 0)-sin(BT), (2

LT




.4.

With the aid of Equation (14), Equations (24) and (25) can be cornbined into one expression:

’é A,A = - _2-. L,l — 2_" g,
p(x.2) B (/" M )¢ , (26)
where EP - éPc + i Cys . @n

Solving Equation (26) for ¢* with the boundary condition:

¢*(x,2) = O infinite upstream, (28)
gives
¢*(z,z) = —gz rEP(cg,ﬁz%e"(Q&E’” Fﬁﬁ*)dg : (29)
From Equation (20) follows
[¢*1. = —/éz_zrcmce,) e -i(%RE - M..P ) dg, | (30)
—»
where
CP) = A0 +iaCpE) . 1)

AC, and AC, are defined as
ACo(2,%) = 4G, 3) + A Cpe2)cosl) + AGys(X)- i %8, (32)

where Aep(i,%) is the time-dependent pressure coefficient difference at x between the upper and lower
surfaces of the airfoil.

leferentlatmg both sides of Equation (19) with respect to z and substituting Equation (30)
for [¢*] in Equation (19) after letting z tend to zero give the following expression

~ T
—J—J- : W(;\c V.p. CP(c&)- K(é zx)dE s (33)
Co tL
h ~ ~ . 1S
and k is the reduced frequency defined as
A A
‘k = 9_9. . (35)

~
-
8
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~ A
Kelx) = % cos(2&'z) Bt

AT . cos (2 "cc) 003{2/52 (Moo - 2)x |

ﬂMoa 2 24 )
-4"/3 f( EI - U"”'U,;ﬁ"(ﬁ»«mp}dﬂ
TEL ). 2 itk
47(}5 Iﬁ g < () (2 "M% foo
iMw jo! A 2_
" s cos(zﬁx)f ﬁ'—;tfi—,_ sl Y 7.2 ;M.(B_ L)z fdo

A 1-
) ﬁ%' sin (2R x) I, ! gt L

K V650 +J(Z-gy-(

(36)
~ A
K’(X) = - 33,,1(2&1)_ ﬁ
¢ —-— cos(z—,x) sinf 2 —,(M,, )x
‘i 4 x P 7=}
+ KM I”( =i _, M,
pre N -1)- (§+Ma)x JdB
0+ o I
l’i\/; ® V_
_ 00 [ ﬁMa
— ws{2 - d8
ang Iﬁ;,g I —1)-os{2 S5 (-ma) =}
2
A 3
& M T B, R
+ 4773 -sm(Zk'x) , ’_]ILI /2%(0_i)z/da
M..
i 1‘; cos (28 x) R o2 k”"("“)"/ (37)
b T
w(x) has been defined as
W(X) = Wk) +iw(x), (38)
where the upwash W(i:t) along the airfoil is expressed as follows:
W) = W (2)-cosbt) + Ws(x)-sin (@), (39)

Because the airfoil is in pitching motion expressed in Equation (1), W, and W, can be calculated
easily and given as

ol

~ A A
W) = -, {2k

~lx>

~ A £ .
. cos (> AR)-sin (H4) | -i Gy | cos@aR) + 2R E - sin(S22)].  (40)
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From Equation (33) the pressure distribution on the same airfoil model in a different pitching motion
in a wind tunnel can be obtained. The uniform flow condition infinite upstream in the tunnel is the
same as in the free air and the angular velocity of the motion and the fixed point are the same and

the same xz co-ordinate system can be used. However, the time origin is not defined in the same way
as in the free air. In this case, the time when the position of the airfoil coincides with its time-averaged
position is defined as t=0. The angle of attack a for the airfoil in the tunnel can be written as follows:

KR = d, + Up-sin(ol) . (41)

The half height of the tunnel is H and the fixed point for the pitching motion is on the tunnel center
line in this paper (see Fig. 2). The small disturbance potential functlon ¢ for the flow field in the

tunnel disturbed by the airfoil also satisfies Equation (2) like ¢ Here ¢ is defined from the full
velocity potential function & as follows:

A A A
® = Usx + @, (42)
Introduce a new function ¢ related to 4’3 by the following:
A
Pe =clUs¢. (43)
This results in the following:
ViOt + . p* =0, (44)
h o* i ey 45
where =(¢c+‘¢s)e_ﬁ_ . (45)

¢. and ¢, are the time-dependent cosine and sine terms similar to $’c and zs in Equation (10). Using
Green'’s theorem, the following expression for ¢* can be obtained:

X 2 2, % - »
SSQ(CP VY -¥-vip*)dQ = <§m(¢ -,—,,“’-2% gg')ds, (46)

where Y is an analytical real-valued function and the other conditions have been described in Equa-
tion (16). Let { be written as

VL 7,5) = W(E,4;%,2)
(3
*3 Al /, %‘“tf"ﬁﬁl @{KI-2 i Jeosle&-2)6 /6

f“ —ooth e /r‘)

+€

wA{d; -2y | cost k(s -2)0]0'0] (47)

then this function is continuous and differentiable two times with ¢ and { except at the point (x,2)
within the following band:

14 -2] < 2H . (48)

Also, KH#mr; n=0,tt,%22, ... (49)
since the principal value of the integral must exist. ¢ is satisfied by the equation

V¥ + 2% =0, (50)

At

By
'J
!
¢




"l g

Hence, Equation (46) becomes

4>‘<fx,z)=—s ol I dg, + [N*L". )ég' pon%E -[Ej—’f]:'w 08 6

Appendix B can be referred to for the detail derivation. In the same way as 3'*,

2 X

417 = - —g— f- CP(cE,)-e".(%Q ) F;;—ez) d¢ (52)

where . A . a
CP@) = ACpc(x) + 1 ACps(x). )

AC ¢ and AC, . are the time-dependent cosine and sine components of the pressure dlfference between
the upper antg lower airfoil surface similar to ACpc and L\C,,s As in the expression for [¢*] ¥,

(9] { Creer)-e s 55 4y &4

2

where

CH() = [Cu&, D] + 1[C3, D] ©5)

CPC’ Cps» ACp and AC,; are the time-dependent cosine and sine components Noting the pressure
difference between the upper and lower wind tunnel walls with Con (x t) and using a Fourier series
expansion t gives

Cpu(&,%) = C;,‘o("l‘l) + Cgc(;u'cos(ﬁ)?.) + C;skﬁ)-sfn WwhH (56)
and hence,
CH(x) = Cpe(X) +i (R (5). (57)

Differentiating the both side of Equation (51) with 2 and substituting Equations (52) and (55) for
(¢*1} and [¢*]H,, into Equation (51) and letting z tend to zero give

W = v-pg CP(E ) K(&-2)dE - g CH(E)- WA(E-x)dE, °8)

where

K@) = (Kt*iKi) t (AK:"’iAKi), (69)

and WA®G) = Wo(o +i W; (0. (60)




From Equation (47) it follows
AKr (1) = zk--{coth(2§;|)—1}-cos(227c)

'\

RN ' Vig® AN
‘”tP V.p. L 9*5'4‘... cot(z A Hf_o) 3in {2 = %(9+Mn) | 99

- kM. V.p.[ -E"- co‘t(zﬁM“ H/__') sm{?k—M"z(ﬁ-Ma)}dﬂ

47(/3 0 §- -
Ma
- Z%;X _E: {co“(zgr“:ﬁw—,-) [} sm[z z(ﬁfﬂ‘_)}dﬂ
47?‘[5 f Co[lr(z ﬁ”nH'r—) ’} 3/”/2-/3,‘&1(9’,‘{,,)] dp (61)

AKi (x) = -ﬁ-{cozA(zkH)-/} sin (2R 7)
Ao vp f '_ f(zM"’HW)-W{Z%-me.)}dﬁ

4173
- %73 VPJ’ ﬁMT wf(z LI HI5)- wsiz—ﬂfzw-ﬁwldﬂ
ﬁ’ﬁ”f {cod(z"“’m:—) '} cos{z Moo x (9 +M.0) § 8
‘4?7,73 "-P-f,”—- {04(2 HVV—) s °°5(2 Mo x(5- Mo}, (62)
Wr(z) = % 2 L eoth (2BA) +1 - cos(2 % 2)
- %“P , 0:;:- cosec (2 "M"Hy—:) sm[z z(ﬂm.,,)}dp
— %xp L'-—l__jf.cg.ﬂec(z B2 5)- 5,,.{2 ™ 2 (0-Mw)| 96 |
B ?‘rrﬁ S:’oﬂ,e zﬁ Am{wd(z %LHV" Je1]-3imi2gw ‘""%(’*M«)}dﬂ

i Moo - -i' K
ﬁ vBJ VE"— 2/, HIP™ {cpdp(zmﬂf'—)*,j 3”'[‘“1(9 Mn)}dﬂ
(63) :




e siastactl sl
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and A
Wi(x) = —-‘%- 22"{(.0&(25!1)1-” sin (2R %)
:7;;' P/ ’/*;_ cosec(z H}’“) cosf2 Mﬂ 2(p+Mp) } 9B
——&—va ] ‘hL osec (2 "‘“"HV") cos {2 "PM" % (8-Mn) j 96
%M
Llige
* 41t/3 “CM. o /60#(27”5}/}’— Jrifemiz gy L1 a8
o R
- %" vp / ;—4? s HW—-[{JII{Z%ﬁﬁﬁ)ﬂ}-w{z%’z(l-ﬁ.)}dﬁ. (64)

Some examples of AK and WA are shown in Figures 3 to 8. w(x) has been defined as
W(X) = w.(X) +iws(x), (65)

where the upwash w(x,t) along the airfoil is expressed as follows:

WA, t) = W (R) + weh)-cos (BF) + we () sim (BF) . (66)

From Equation (41) it follows that

A A 2 .
Wix) = =20 -R--= =i (67)
Subtracting Equation (33) from Equation (67) gives
! o >
D—wAM&) = j CP(cE) AK(E-1)dE - YCH(CE,)-WA(&—z)dL
y & -00
pe) ~
+ vp | ACPeE) Kt -0, | (68)
where e
Awx) = wiz) - wix), (69) |
L]
AR = AKg(x) + LAK:, (70) | -
and ACP (%) = CP(X) - €P(X). (1)

It should be noted here that CP (%) and CH (x) and w (X) can be measured in a wind tunnel test but
(%) and @, and A7 are unknown. The unknown quantities in Equation (68) are ACP(x), @, with

Ar being an arbitrary parameter. The aim in the wind tunnel wall correction is to obtain interference-

free data from the test data. Therefore, it is better for CP and CP to be close to each other because
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there is the possibility that the difference between CP and CP can generate completely different flow
field from each other due to the coupling between viscous and inviscid flow regions such as the
separated flow. As a result, @, and Ar must be chosen so that ACP may be as small as possible. ACP is
a function of x and the magnitude of it depends on its definition. Equation (68) reduces to

Uoe

Xt ~ A A
vp- [ "aCP(er) Rep-nydg = WD, W .
- Use U
where
. 2 IT -
B = -~ | CPer)AKE-1IE + [ CH(cE)-WA(E-x)dE,. (3

IL -
In this paper, &'A and Ar are chaosen so that the following function may be a minimum:
~ I 2
I(%,A?) = g | wi + Aw | dE . (74)
X

It will be studied in the next section whether these valuesof &, and Ar are satisfactory. Then

o1
aaA = 0 s (75)
and
ol
2a2 = 0. (76)
From Equations (40), (67) and (69) it follows
[ -2k
—-2RX
Tan (waR) = {i _s — a7
Oa(1+482x2) - (f, +2R-xf)
where
Wi _ .
Vo = ferif, (78)
and ("~ ) means the averaged value over the airfoil chord. 4
Also,

i t - A—- A
oy = Ola = {cos(bdr) -1} + m-{(ﬂ—na{‘) sin (04?)

-— A o A i
- (f, + 2kxE )-cos(Ga) ] . (19) 5
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Because the values of Ar and @, can be calculated with the aid of Equations (77) and (79), the
right-hand side of Equation (72) can be estimated. If the value of the term in Equation (72) is small
enough over the airfoil to be neglected within the accuracy of the test condition, ACP can be also
neglected. In this case, the tunnel test data can be corrected in the sense of wind tunnel wall inter-
ference. However, not all tunnel test data can be corrected. In such circumstances, it is necessary to
solve the integral equation Equation (72) for ACP(x) and to get CP(x) with the aid of Equation (71).
However such additional correction is not recommended because it is desirable that tunnel test data
are affected as little as possible. In addition to the correction mensioned in this paper, the correction
corresponding to the time-averaged flow must be made. This correction is the same as that for steady
flow. The terms £, and f; on the right-hand side of Equation (78) can be calculated from Equation (73)
with the aid of Equations (61) to (64).

The wall interference on an airfoil in plunging motion can be estimated in a similar way as

that for pitching motion. The time and space co-ordinate system is the same as in the prewous case.
The z-co-ordinate of the mean camber of the airfoil model in the motion in free air, 3 (x ), is

Sci1) = S (0 + Ry sinjw-(t -4} 5 (80)

where ScO means the mean camber of the airfoil itself and h, is the amplitude of the plunging
motion. In this case the upward velocity at a point on the airfoil is

~ A = A A
¥(2,t) = Rew-cos{@-(t-a2) - (81)
Using this definition for W(x), it follows
~ A ~ . A A
wi(x) = ﬁ,,-ul;-cos((:m’&)+lﬁ,\-(:,-sin(wda). (82)

Consider the same alrfoxl model in the plunging motion installed in a wind tunnel. The angular velocity
is also the same as (&, and the z-co-ordinate of the mean camber, S (x t),

A A A
Se(x,t) = S (x) + Ra-sin(ai). (83)

From Equations (65) and (66),
wWx) = Ra- i . (84)

By the same method used in deriving corrections for pitching motion, the corrections for the plunging
motion can be estimated. In this case, the estimation function I in Equation (74) becomes a function
oth, and Ar, that is,

~ Ly
I(Ry,42) = ( | wieg) + dw(egpl'dE, | (85)

Xy
This function must be minimum with respect to both T\'A and Ar:

31'._0

242 | (87)




From Equations (85) to (87),

ts

tﬂr\-((:JAe) = - A _
fe +2R-Rale

(88)

and

E',. — Ra = {cos(waR) -1 }-Ra -;—{-ch-ws(QA’é)+{_s-sin(c?m%)1 . (89)

3. SOME EXAMPLES OF CORRECTION

Some examples of wall corrections using the new method are described here. It should be
noticed here that the examples indicate only the process of using the method and its limitations,
but that they cannot prove the validity of the method. This method has been already proved analyti-
cally on the base of some of the assumptions mentioned in the previous section. Many experiments
have indicated these assumptions are reasonable and they have been adopted in many other papers.

For simplicity in the calculations, the wall interference in an open tunnel is investigated.
In order to confirm the procedure of solving Equation (33) to be correct, the pressure distributions
on the oscillating airfoil in pitching motion are calculated using a numerical method. The airfoil is
installed in an open tunnel having a half-height of 5.0. The uniform flow Mach number is 0.866.
The airfoil chord length is 1.0 and the pitch axis is at the mid-chord point. The amplitude of the
oscillating angle of attack is 1.0 degree. Ten values of the reduced frequency are adopted ranging from
0.02 to 0.18 in steps of 0.02 plus 0.17 because 0.182 is approxzimately the tunnel resonance frequency
which can be calculated from Equation (49). The tunnel resonance frequency for the open tunnel
cannot satisfy the condition given in Equation (49). The amplitude of C; due to unit pitching motion
with reduced frequency is shown in Figure 9, and the phase lag in C; is shown in Figure 10. These
quantities are calculated from the expression

lCle = Fx"'qCL:+CL,i, (90)

by = Torn*(Cl.’Cue), (91)

and

where
A A
Cu(t) = Cy, + Croos(b) + Cpy- (St - 92)

The two figures, Figures 9 and 10, show good agreement with the figures in Reference 3. This fact
means the present solving process is right. Then suppose the data obtained by this numerical way to
be data which should be corrected to data in the free air. In this case, the pressure coefficient on the
tunnel walls is always zero. With the aid of Equations (77) and (79), the incidence amplitude and the
phase lag in free air corresponding to the tunnel flow can be calculated from the pressure coefficient
distribution on the airfoil in the open tunnel. Results are shown in Figures 11 and 12. The pressure
coefficient difference between the upper and lower surfaces of the airfoil is

A A . A
AC (R, E) = ACp,(1) +4C, (0 cos by + 4G - @D, o :
which has been defined at Equation (53). The time-dependent angle of attack is expressed:

A(t) = 0.0174533 - sin () . (94)
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From Equation (1) follows

AG) = - sin{io-(f -adf - (95)

re. T g A T e

For the pressure coefficient difference on the airfoil in the free air. This equation can be approxi-
mated by Equation (93) when the motion of the oscillating airfoil is defined by Equation (95), where
d, and GAT can be calculated using Equations (77) and (79). If the airfoil in the free air oscillates

in the same way as in the tunnel, that is,

e

N

A(t) = dy-sindt) (96)
the time variable t is transformed by

A 'Y

t =t + 42 . (97)

The resultant expression for AE,, (%,t) can be written as:

N AR A A A A X
8Cp(7,}) = { ACpela)-cos(wae) + ACps (2)- sin (whR) }- cos (Wt )

~

+{ ACh. (1) cos(6aR) - ACp (%)-5in(GaR) ] sin(&E)  (o8)

T M TP E

In this way, the in-phase and out-of-phase components of the pressure coefficient difference as a
function of the oscillating angle of attack can be calculated. By solving Equation (33) directly, A

can be obtained. Comparlson between AC obtained from Equation (98) and Equation (33) prowges
a simple way for correcting &, and Ar. The results are shown in Figures 13 to 14. These figures show
that the method is suitable for low reduced frequencies but fails near the tunnel resonance frequen-
cies. The time-dependent lift coefficient and pitching-moment coefficient about the pitch axis with
the angle of attack are also shown in Figures 15 to 18. This example gives the extreme case becav-e
the uniform flow Mach number is 0.866. The next example is the same as in the previous case ex.ept
for the Mach number and the tunnel height. The uniform flow Mach number is 0.600 and the tunnel :
semi-height is 4.0. In this case, the tunnel resonance reduced frequency is 0.52360. The reduced ;
frequency was varied from 0.05 to 0.50 in steps of  0.05 and 0.52. Plots of | Cy |, and ¢, with k

are shown in Figures 19 and 20, The corrections, (@, - a, ) and wAT7, are shown in Figures 21 and 22
while Figures 23 to 24 show ACP and Figures 25 to 28 show the C; vs a and C,, vs . These figures
show also the same behaviour as in the previous case.

=T

e 1~ oA

4. CONCLUSIONS

A new method of estimating the wind tunnel wall interference on an oscillating airfoil is
presented. Instead of expressing the wall condition in unreliable ways, the time-dependent pressure
distributions on the oscillating airfoil and near the tunnel walls in the flow direction are measured.

With the aid of the measured pressure distributions, the corrections to the incidence amplitude and the
phase lag, (A7), can be calculated by this new method. This method is very effective when the test is
performed in a tunnel with ventilated walls because the unreliable expressions for the wall character-
istics are not used at all in this method. The corrections are satisfactory except at reduced frequency ,
3 near the tunnel resonance frequency. To determine whether corrections can be carried on by this
method, it is necessary to check the induced upwash distribution on an airfoil due to the walls.

P,

ol 4 LR IRE )
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FIG. 1: AN AIRFOIL IN PITCHING MOTION IN FREE AIR
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WEIGHTING FUNCTION AK

O~
)

UNIFORM MACH NUMBER = 0.60
REDUCED FREQUENCY = 0.100
TUNNEL SEMI—HEIGHT = 4.00c

FIG.3: AK vs X/¢
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LIFT COEFFICIENT DUE TO UNIT PITCHING

MOTION WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.866
CENTER OF PITCHING MOTION : 0.50
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FIG.8: |C|_ vs k




PHASE LAG IN LIFT DUE TO UNIT PITCHING
MOTION WITH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER = 0.866
- CENTER OF PITCHING MOTION : 0.50

o
o
n

FREE .
o OPEN TUNNEL ,_
SEMI-HEIGHT = 5.00¢

[ |
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-60.0"

FIG. 10: |¢y | vs k




| INCIDENCE AMPLITUDE INCREMENT DUE TO

WALL INTERFERNCE WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.866
CENTER OF PITCHING MOTION : 0.50

-
OPEN TUNNEL
SEMI-HEIGHT = 5.00c¢
INCIDENCE AMPLITUDE = 1.0°
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FIG. 11: Aa, vs k
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PHASE LAG IN LIFT DUE TO WALL INTER- f

FERENCE WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.866 ?
,CENTER OF PITCHING MOTION : 0.50

87 a
OPEN TUNNEL
SEMI-HEIGHT = 5.00c ,
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FIG. 12: wAT vs k
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PRESSURE DIFFERENCE DISTRIBUTION

ACp0COS((:)%)+ACpsS i n((:)‘{)

UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.080
THE CENTER OF PITCHING : 0.50

—— AC,. IN FREE AIR
--------- AC,, IN FREE AIR
x OPEN TUNNEL &/c= 500 a= 1.000°

A
o CORRECTED a,= 0.951°

a,= 0.951°

ACpc , ACps

-0.25
—
ax

) FIG. 13: AC, vs X/c




PRESSURE DIFFERENCE DISTRIBUTION

ACPCCOS(& {)+ACpsS [ n(a) {)

UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.170
THE CENTER OF PITCHING : 0.50

—— AC,. IN FREE AIR

a,= 0.724°
AC, IN FREE AIR

x OPEN TUNNEL H/c= 5.00

a,= 1.000°
© CORRECTED a,= 0.724°

FIG. 14: AC, vs X/c




C,—a CURVE

UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.080
THE CENTER OF PITCHING : 0.50.

—— OPEN o,= 1.000° /c= 5.00

a= 0.951°
............. CORRECTED A 1= g 8°

——— FREE o= 0.951°

FIG.15: C vs «
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C,—a CURVE

UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.170
THE CENTER OF PITCHING : 0.50

—— OPEN a,= 1.000° H/c= 5.00

a= 0724°
------------- CORRECTED c?)l’r= 33 8°

—— FREE a,= 0.724°

0
o

C

FIG.16: C_ vs o
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C,—a CURVE
UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.080

THE CENTER OF PITCHING : 0.50

——— OPEN a,= 1.000° H/c= 5.00

a= 0.951°
------------- CORRECTED (:)Z’T:—Q.BO

—- - FREE a,= 0.9571°

A

FIG.17: C, vs «
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C.—a CURVE
UNIFORM MACH NUMBER = 0.866
REDUCED FREQUENCY = 0.170

THE CENTER OF PITCHING : 0.50

——— OPEN a,= 1.000° H/c= 5.00

o= 0.724°
------------- CORRECTED (:)Z’T—‘—' 33 8°

——— FREE «,= 0.724°

FIG. 18: C, vs «
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LIFT COEFFICIENT DUE

MOTION WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.60

CENTER OF PITCHING MOTION :

15.0

——— FREE
OPEN TUNNEL
SEMI—HE | GHT

10.0

N, S

ICLIa

FIG.19: |Cp| vs k
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PHASE LAG IN LIFT DUE TO UNIT PITCHING
MOTION WITH REDUCED FREQUENCY

UNIFORM FLOW MACH NUMBER = 0.60
. CENTER OF PITCHING MOTION : 0.50 i

[ 2
7]

FREE

‘ o OPEN TUNNEL
‘ SEMI-HEIGHT = 4.00c

FIG.20: |¢y|, vs k
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INCIDENCE AMPLITUDE INCREMENT DUE TO

WALL INTERFERNCE WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.60
o CENTER OF PITCHING MOTION : 0.50

N—l
OPEN TUNNEL
SEMI-HEIGHT = 4.00c
INCIDENCE AMPLITUDE = 1.0°
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PHASE LAG IN LIFT DUE TO WALL INTER-

FERENCE WITH REDUCED FREQUENCY
UNIFORM FLOW MACH NUMBER = 0.60
CENTER OF PITCHING MOTION : 0.50

o

OPEN TUNNEL
SEMI-HEIGHT = 4.00c
INCIDENCE AMPLITUDE = 1.0° !

FIG. 22: wAT vs k




ACpe , ACps
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PRESSURE DIFFERENCE DISTRIBUTION

ACpccos(wi)+ACpgsin(wt)

UNIFORM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.100
THE CENTER OF PITCHING : 0.50

—— AC_, IN FREE AIR .
P a= 0.931

--------- AC, IN FREE AIR

x OPEN TUNNEL H/c= 4.00 a,= 1.000°

© CORRECTED a,= 0.931°
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FIG.23: ACp vs X/c
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PRESSURE DIFFERENCE DISTRIBUTION

ACpc:COS((:) %)‘*‘ACPSS i n((‘:) ‘t\)

UNIFORM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.500
THE CENTER OF PITCHING : 0.50

—— AC.. IN FREE AIR
pe a,= 1.126°

AC,, IN FREE AIR *

x OPEN TUNNEL H/c= 4.00 a,= 1.000°
o CORRECTED a,= 1.126°

A

FIG.24: AC, vs X/c
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C,~a CURVE

UNIFORM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.100
THE CENTER OF PITCHING : 0.0

— OPEN a,= 1.000° H/c= 4.00

o= 0.931°
------------- CORRECTED A%, —- 7 3

— -~ FREE a,= 0.931°

1
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o degree

FIG.25: C| vs
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C,—a CURVE

UNIFORNM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.500
THE CENTER OF PITCHING : 0.50

—— OPEN a,= 1.000° H/c= 4.00

o= 1126°
............. CORRECTED Ah e 30.4°

——~ FREE a,= 1.126°

>

2.0
& degree

FIG.26: C vs «
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C ~a CURVE

UNIFORM MACH NUMBER = (0.600
REDUCED FREQUENCY = 0.100
THE CENTER OF PITCHING : 0.50

—— OPEN a,= 1.000° A/c= 4.00

o= 0.931°
CORRECTED ONr=—7 .30

—— FREE a,= 0.937"

>

ey
-2.0 ~1.0 1.0 2.0
' o degree

FIG.27: Cpy vs o




C_—a CURVE

UNIFORM MACH NUMBER = 0.600
REDUCED FREQUENCY = 0.500
THE CENTER OF PITCHING : 0.50

—— OPEN a,= 1.000° Fi/c= 4.00

o= 1126°
............. CORRECTED Ahr— 30.4°

—— FREE a,= 1126°

>

,
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FIG.28: C,, vs
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APPENDIX A

DERIVATION OF EQUATION (19)

Firstly it will be proved that $(£ ,{'x,2z) in Equation (17) satisfies the Helmoltz equation
Equation (18) everywhere except at a point (x,z). Equation (19) will be obtained later.

W(E $ix (,z) in Equation (17) is bounded everywhere except at a point (x,z). Unless { = z,
the derivative of  with £ or { can be obtained by the way of f differentiating the two integrands on
the right-hand side of Equation (17) directly with £ or {. So \b satisfies Equation (18) unless ¢ = z.
From Equation (17) it follows:

o0
24

!
= K.sqnz-2){ gcos{n\g-zw;_ez%-cosma-r)e}dﬁ
2T 0

raz
o _ T (A-1)
+j omK1% Z o™ cvs{;c(_e,-zw]dﬂf-
{

Equation (A-1) can be arranged to give:

W _ ok _2) r k(k-x0Fdo + [ e otie _23p)dp
32 lp4y = Zﬁ-53n(é )[ owS{ (E-%)6f f, s{k(&-2)6}

1

- Jof l—wsl’clé-ZIw_—e—’}}-cos{K(E,-x)ﬂ]a’ﬂ

} foo{ e—K/é‘Z/’ﬁ_ e-K/C-Z/‘VﬂT—_/‘}_wS(/K(E,_Z,)‘B‘/dﬁ] . (A-2)
i

Because the first two integrals at the right-hand side of Equation (A-2) can be estimated analytically
easily, Equation (A-2) reduces to

| _ | &2 |
LI L%z - E;—I'an(g’~z)[ K@ -x ) th(& 1)}" K‘m S/n/l((é-;)j

1 1d-z|
SOV

|
= | V- etz 2l ) - eosf e 0§90

cos{ k(¥ -x )5

® _kiL-zlp Z (A-2a)
- L le — e T 5 s e - )pdo] 5 EXX.
So
lim ¥ _— fm Ql;:&; E % T . (A-3)

&>x4p 04 S—=z2-0 9

Because d/ is continuous with { except at a point (x,z) and because of the relation (A- 3) the derivative
of ¥ with § on the line { = z exists and its value is also 0 unless ¢ # x. The derivative of ¥ with ¢ is

also continuous with respect to { except at a point (x,z). The second derivative of \1/ with { is obtained
from Equation (18):

v /

_. - _ k|
2 ——7-.5 +sin {kI&-2Ifi=g" }- cosi k(& - 220 | dB

QUi

] Pl TP (A-4)
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From Equation (A-4), the second derivative is symmetric with respect to ({-z). Resultantly the
second derivative does exist and its value is

-a-’—ir = Qim 3"&‘

0L y—y  Zwzr0 347N,y
because of the same reason as the first derivative is estimated. From Equation (18), follows

;& ¥ ox, (A-5)

W\ = 4N(:clg ), (A-6)

where N, is the Newmann function. So the first and second derivatives with { exist unless ¢ = x.
Because the second derivative of tl/ with £ at { + z is symmetric with respect to ({-2),

1Y (. 27

= tm —
DE' ly=y ~ g~zto P& gz’ (A-7)

It is of course that the second derivatives of $ with both £ and ¢ are bounded even if { tends to z
unless £ = x. Resuliantly \lz(E {:x,z) can satisfy Equation (18) everywhere except for a point (x,z).

Now suppose a small circle in the considered space (£,{) which has a radius p and its center
at (x,z). An arbitrary point (£,{) on the circle can be expressed:

& = x +p.cosu

C =32 +pPsink ; p>0 (A-8)
If n is the inward normal co-ordinate to the circle,
vy (A-9)
an 2P
Therefore
] 187/
5—%{ = (>/rzzq[ j KIS . cos|kplcosy ) B } 8
* 8 -k plsinyg 1VBZ;
- Co. —e e (& .
2TC e [, fo*-1 ¢ csinfrplcos )P} dE
*t Plr,e), (A-10)
where P is bounded for both p and . This circle is notated with 9§2p.
2n o
w "ds = ¢ ( f ?
-¢"(2,,2,) ¥y ]
<§m an ? 0 P o 0¥ (A-11)

where (xg, z;) is in 982p.
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Because

R' ’ P =0
( d )
le P L P:Q) ¥

(A-13)
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x ~ K plsi [ 2n
p.o Pi 'S‘"’UJ d 7Qw_‘_cos{»:p(cosce)f)}do]dle' = EI sin* de
! 0
and
~ P( > ‘ P =—Im’ud¥.
! p-0 0 [dt ¢ R smikp(uzw)s}da]dg )
Then
W gras = —P'(x,2)

@
=

. ?
fim <§
P~0 )hq,

Similarly '117 on the circle is

=
where Q(p,¥ ) is bounded for both p and V. Then

,§aoil';_frds' PMH ¥del,

P

where M is the maximum value of 3¢*/0n on 3£2p. From Equation (A-17) follows

191 ¢ Ly (%L -prlsineigT
W mlgl e cos{kp(cosu)0]d8 | + Q).

The integral at the right-hand side of Equation (A-19) reduces to

(" (sine] {7
—_— -PK n -~
'5, o € f o5 { kPaos)5 148 |

I (| —pxisin¥g 4 .
< L\I??ﬁ'e -4y = a{H (cplsinel) = NoCkplsimel) ]

(A-14)

(A-15)

(A-16)

(A-17)

(A-18)

(A-19)

(A-20)

where H, is the Struve function and bounded for any value of its variable. The Newmann function N

has the following property:

No®) = &0y 1 leg (£) #§

k

2% (=D ot L
- = Z Z (A-21)
T o (I (3 2 ) m M2
‘ where J; is the Bassel function and bounded for x and 1 is the Euler constant number. (y = 0.57721...)
: Then
le P |1p| (A-22)
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Resultantly from Equation (A-18) follows

~ %%, )
léagws—ﬁds‘—-.o 5 P_'O . (A'23)

With the aid of the thin airfoil approximation Equation (16) becomes

<D*(z,2)=—f1[$*.%'g’_i;.g_¢] dt, +§ (cb' L ~%%“)cb, (A-24)

where 02y is a circle with the radius R and its center at (x,z). As previously mentioned, ’J and its
first derivative with ¢ are continuous except for a point (x,z). So the first integral becomes

’L@*]t- 3—? 120 f [ ] wl,ﬁ , 9E. (A-25)

0¢*/0¢ means the upward velocity component and should be continuous throughout the flow field.
But it must coincide with the vertical component of the airfoil surface velocity from x, to xy.xp
and xg are the transformed leading and trailing edge co-ordinates, respectively. Because the airfoil
model is oscillating in one piece, there is no difference in the vertical velocity between the upper and

lower surfaces. Then
aq>* .
L )- , X € [x ,00) . (A-26)

As a result the first integral of Equation (A-24) becomes

co
- [&7
gl:. ¢ ]- Z ‘l,=0 (A-27)
From Equations (A-10) and (A-17) it follows that
231_} { . (A-28)
,BPIF:R|=O(\J—'§;) ’ [R_’°°]
and
| ¥lopl = O<V—) ; LR —=0o] (A-29)

where ‘O’ is the Landau’s symbol and (A-28) means
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In this case Equation (A-24) becomes the same equation as Equation (19). However §P(fc) obtained
from the integral equation Equation (33) based on Equation (19) is limited because ¢* corresponding
to CP always satisfies the conditions (A-31 and (A-32). Experimentally such CP as is obtained from

Equation (33) seems a good approximation for the flow considered. Both conditions (A-31) and
(A-32) are assumed to be satisfied in this paper.
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APPENDIX B

DERIVATION OF EQUATION (51)

The integral function on the right-hand side of Equation (47) is analytical everywhere
including the point (x,z). The function also satisfy the Hermholtz equation Equation (50). As a result
¥ is also a solution of Equation (50). Because ¥ can be expressed in the form of the sum of w and an
analytical function everywhere, Equation (46) reduces to the following form similarly to Equa-

tion (16): (see Fig. 29)

H
¥'(z,2) = —{_H(‘#';g-?/f. g—g")[ %

H
> oY _ op”
+ {_H(<p Y w-‘;g‘)/ﬁe dz

S Lo -v-321] o
t aur 20"
- [0 3, e+ { [2277u]de .
From the same reasoning as mentioned in Appendix A,

[M)’_] = ; x elx,m) .

The last term in Equation (B-1) vanishes. Infinitely upstream there is no disturbance so that

Lim {_(qa* Wy 38| 4k =0,

R-ao

From Equation (47) it follows

| el =0(f&) 5 [R—w],

where ‘O’ is the Landau’s symbol in Equation (B-4) and

ziz; ﬁl ?a%lla_g\ =cC,

where c is a constant number. Similarly

[¥lewe | = O() 5 [R—c],

lqﬂ’s.g\ = O(TR_) 5 [R—"O"J)

and
] = 0GR) 5 LR—w],

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)

(B-6)

(B-7)
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where ‘O’ is also the Landau’s symbol and Equation (B-7) becomes

fim | ler!

R~ IR

| [(‘P* ng ?ﬁ /&Rdg | =0 ; R—o . (B-10)

Experimentally, the conditions (B-7) and (B-8) are always satisfied except for the case of tunnel
resonance. Equation (B-1) then becomes Equation (51).
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